Skip to content

An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions.

Lee, Wonil; Seto, Edmund; Lin, Ken-yu; Migliaccio, Giovanni C. (2017). An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions. Applied Ergonomics, 65, 424 – 436.

View Publication

Abstract

This study investigates the effect of sensor placement on the analysis of trunk posture for construction activities using two off-the-shelf systems. Experiments were performed using a single-parameter monitoring wearable sensor (SPMWS), the ActiGraph GT9X Link, which was worn at six locations on the body, and a multi-parameter monitoring wearable sensor (MPMWS), the Zephyr BioHarnessTM3, which was worn at two body positions. One healthy male was recruited and conducted 10 experiment sessions to repeat measurements of trunk posture within our study. Measurements of upper-body thoracic bending posture during the lifting and lowering of raised deck materials in a laboratory setting were compared against video-captured observations of posture. The measurements from the two sensors were found to be in agreement during slow-motion symmetric bending activities with a target bending of <= 45. However, for asymmetric bending tasks, when the SPMWS was placed on the chest, its readings were substantially different from those of the MPMWS worn on the chest or under the armpit. (C) 2017 Elsevier Ltd. All rights reserved.

Keywords

Detectors; Construction Workers; Posture; Wearable Technology; Accelerometers; Work-related Injuries; Health; Accelerometer For Inclinometry; Construction Worker; Work-related Musculoskeletal Disorder; Motion Measurement; Position Measurement; Sensor Placement; Upper-body Thoracic Bending Posture Measurements; Trunk Posture Measurements; Zephyr Bioharness 3; Sensor Placement Effect; Construction Worker Trunk Posture Analysis; Wearable Sensor Evaluation; Asymmetric Bending Tasks; Slow-motion Symmetric Bending Activities; Mpmws; Multiparameter Monitoring Wearable Sensor; Actigraph Gt9x Link; Spmws; Single-parameter Monitoring Wearable Sensor; Low-back-pain; Physical-activity Assessment; Risk-factors; Musculoskeletal Disorders; Reliability; Movements; Validity; System; Gt3x+accelerometer